
Under Construction:
Data-Aware Components
by Bob Swart

This month we’re going to look
at a topic we have not covered

at all so far: visual data-aware
components!

Components can be classified
into two groups: visual and non-
visual, as we’ve seen in previous
columns. However, we can also use
other criteria to group compo-
nents together, such as VBX-based,
DLL-based or wholly native compo-
nents, or data-aware and non-data-
aware components. For data-aware
components, Delphi has reserved
two pages on the component
palette: Data Access and Data
Controls.

Data Access
The components on the Data
Access page can be seen as the
non-visual data-aware compo-
nents. Among them are TTable,
TQuery and a special one named
TDataSource. This last component
can be seen as a connector be-
tween a non-visual data-aware
component (the ones that hold the
actual data) and a visual
data-aware component (the ones
that display that data). Actually,
TDataSource is connected to
TDataSet (from which both TTable
and TQuery are derived) and stores
the connected TDataSet in the
DataSet property. It’s up to the
visual data-aware controls to
connect to the TDataSource from
the other side and hence visualise
the data on the form.

Data Controls
The components on the Data
Controls page are the visual data-
aware components. In order for
them to work they have to be
connected to a TDataSource and for
this purpose they have a property
called DataSource. The main reason
why visual data-aware controls are
not directly connected to a dataset
but to a connecting datasource

instead is to give the user the
ability to switch an entire set of
visual data-aware controls from
one table to another by giving the
DataSet property of the connecting
datasource another value. If there
was no datasource in between
them, the user would have to
change all the DataSet properties of
all the visual data-aware compo-
nents. Furthermore, the data-
source abstracts the visual
data-aware controls from the
actual source of the data. The data
could be from a table or query and
the ‘end-user’ controls don’t really
have to know!

Note that the data can flow from
the table to the visual component
(if you display something) or the
other way around (if a new value
has been entered). The data-flow
itself is therefore bi-directional. As
a practical example, we can drop a
TTable (Table1) onto a form, set its
DatabaseName property (to DBDEMOS)
and TableName property (to table
ANIMALS.DBF), and set Active to
True. Now, drop a TDataSource
(DataSource1) next to it, set its
DataSet property to Table1 and now
you’re ready to drop visual
data-aware controls from the Data

Controls page onto the form and
connect them to DataSource1.

If we do this, we can see a distinc-
tion between some of the visual
data-aware controls: some of them
start to work immediately when we
set the DataSource property (like
TDBGrid) and some need some addi-
tional work (like TDBEdit). The
latter one does not work on entire
records, but on single fields. Actu-
ally, this is the case for most of the
visual data-aware components: we
have to specify a field as well and
therefore need to give the property
DataField a valid field value (see
Figure 1).

Writing Data-Aware Controls
So, enough background about
data-aware controls for now. Let’s
move on and actually create a
visual data-aware control of our
own. The main problem is to think
of an original control: one that isn’t
already present on the Data
Control page of the component
palette and that hasn’t been done
before (I’ve seen lots of data-aware
outliners, for example). Personally,
I have always wondered about
BLOB (Binary Large OBject) fields.
They are most often used to hold

➤ Figure 1

March 1996 The Delphi Magazine 29

image data, but can they be used
for anything else? Yes, of course
they can. My version control sys-
tem (ViCiouS, more about this in a
future article) puts entire source or
form files in BLOB fields.

In fact, you could store just
about anything in BLOB fields,
including multimedia stuff such as
WAV files. Hey, now there’s a good
idea, why not make a data-aware
WAV playing button based on a
BLOB field: a TDBWavButton!

TDBWavButton
From what we’ve learnt in the first
part of this article, it seems that
a TDBWavButton would need a
DataSource property as well as a
DataField property (after all, it’s
only interested in the data of one
BLOB field). Using the component
expert to derive a new component
from TBitBtn (so we can add a nice
glyph as well, using the property
editor we developed in the
February issue) and adding these
two properties, we get the skeleton
source code for our TDBWavButton
shown in Listing 1.

The question is, where or how do
we store the values of the
DataSource and DataField proper-
ties? In this situation, it always
helps to have the Visual Class
Library source code available on
disk. Remember, it’s included in
the RAD Pack and the Client/Server
version of Delphi 1.0 and 2.0, plus
Delphi Developer 2.0, or you can
buy it separately from Borland –
it’s a serious must have for all
component builders!

Consulting the VCL source code,
it seems that the connection
between a visual data-aware con-
trol and a TDataSource component
does not actually happen using a
property of type TDataSource, but
with a so-called data link property
(FDataLink of type TDataLink).

There are two kinds of data links
with Delphi: the ones that connect
an entire table or record (for exam-
ple TDBGrid) and the ones that con-
nect to a specific field. The latter is
the one we are interested in and is
of type TFieldDataLink. It’s the data
link that has internal properties
of type TDataSource (for the
DataSource property) and String

unit DbWavBtn;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, Buttons, DB, DBTables;
Type
 TDBWavButton = class(TBitBtn)
 private
 { Private declarations }
 FDataLink: TFieldDataLink;
 protected
 { Protected declarations }
 function GetDataSource: TDataSource;
 procedure SetDataSource(Value: TDataSource);
 function GetDataField: string;
 procedure SetDataField(const Value: string);
 published
 { Published declarations }
 property DataSource: TDataSource read GetDataSource write SetDataSource;
 property DataField: String read GetDataField write SetDataField;
 end;

procedure Register;

implementation

function TDBWavButton.GetDataSource: TDataSource;
begin
 Result := FDataLink.DataSource;
end;

procedure TDBWavButton.SetDataSource(Value: TDataSource);
begin
 FDataLink.DataSource := Value;
end;

function TDBWavButton.GetDataField: string;
begin
 Result := FDataLink.FieldName;
end;

procedure TDBWavButton.SetDataField(const Value: string);
begin
 FDataLink.FieldName := Value;
end;

procedure Register;
begin
 RegisterComponents(’Dr.Bob’, [TDBWavButton]);
end;

end.

➤ Listing 2

Type
 TDBWavButton = class(TBitBtn)
 published
 property DataSource: TDataSource;
 property DataField: String;
 end;

➤ Listing 1

for the DataField property. Adding
the access function for the
DataSource and DataField proper-
ties yields the new source for
TDBWavButton which is shown in
Listing 2.

But we’re not done yet: we must
of course make sure that the data
field is created and destroyed
together with the object itself. To
do this, we must override the
public constructor Create and the
destructor Destroy as shown in
Listing 3.

Now we’re ready to install the
component on the component
palette. It will be able to connect to
a datasource, and give us the
ability to pick a field from that
datasource. Next we’ll look at how
we can include functionality to let
the data link and the bit-button
interact with each other (it’s
almost like multiple inheritance...).

OnDataChange
The TDBWavButton component that
we’ve designed so far is still an

30 The Delphi Magazine Issue 7

empty shell. It does nothing to even
remotely connect the field data and
the button click action.

But before we even talk about
this connection, first of all the
button needs to be made truly
aware of its data. For this, it needs
to respond to the OnDataChange
event of the data link: an event that
gets fired whenever the data in the
field changes (for example, when
the user scrolls from one record to
another, or when the datasource
gets disconnected). An initial way
to respond to this event could be
as follows:

Enabled := Assigned(FDataLink)

But we need to do more, of course.
This DataChange event is the perfect
place to get the WAV data out of the
field and into a local memory
stream that can be used by the
click method of the button to
actually play the WAV file.

For this, we need to add a hidden
field named MemoryStream to the
component, of type TMemoryStream.
This field is to be created inside the
constructor and freed inside the
destructor (just like the DataField
itself). Also, in the DataChange
method, we can fill it with the
contents of the blob field as shown
in Listing 4.

Note that we need to check if the
FDataLink.Field is actually a
TBlobField. And, even if it is a
TBlobField, we cannot be certain
that it will necessarily contain a
WAV file data. For all we know, it
could contain image data (which is
actually more usual, see the
Database Expert article elsewhere
in this issue).

But, for now, we’ll assume that
the user of the component knows
what they are doing and has been
careful to assign the TDBWavButton
to a valid TBlobField which holds
WAV data.

Click
All that remains now for our new
TDBWavButton is to override the click
method of the parent class TBitBtn,
in order to play the WAV file inside
the MemoryStream and execute
inherited click as well. Note that we
can use the Memory property of the

MemoryStream to supply a pointer to
sndPlaySound:

procedure TDBWavButton.Click;
begin
 sndPlaySound(
 MemoryStream.Memory,
 SND_ASYNC OR SND_MEMORY);
 inherited Click;
end;

This code is actually very danger-
ous. It plays the sound asynchro-
nously, in the background, and it
won’t stop until the sound playing
has finished. But what if we change
the contents of the MemoryStream
during playing, ie what if we go to
another record while the sound is

still playing? Well, all I can say is
don’t do it! I’ve been able to bring
Windows 95 down with this test
and that’s not always a simple
thing to do!

We need to stop playing the
sound just before we do anything
else in the OnDataChange event
method and while we’re at it, we
need to make sure to stop playing
the sound when we destroy the
component as well (for the same
obvious reason). To stop
sndPlaySound from playing the
current sound, we have to call it
again with a nil argument (I’m not
sure if this is officially documented
somewhere, but at least it’s good to
know):

procedure TDBWavButton.DataChange(Sender: TObject);
begin
 Enabled := Assigned(FDataLink);
 if Enabled then begin
 MemoryStream.Clear;
 if (FDataLink.Field IS TBlobField) then
 with (FDataLink.Field AS TBlobField) do SaveToStream(MemoryStream)
 end
end;

➤ Listing 4

constructor TDBWavButton.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FDataLink := TFieldDataLink.Create;
end;

destructor TDBWavButton.Destroy;
begin
 FDataLink.Free;
 inherited Destroy;
end;

➤ Listing 3

➤ Figure 2:
Our new
component
in action

March 1996 The Delphi Magazine 31

sndPlaySound(nil, 0);

All this leads us to the final version
of the source code of TDBWavButton,
shown in Listing 5.

Demo
The TDBWavButton is a read-only
visual data-aware component. It
will not be able to enter a WAV file
into a field of a database. So how do
we test this component? Well, to
that end I’ve written a little demo
program (see Figure 2). It’s based
on a table with two records. Each
record has two fields, an alpha field
called Name and a BLOB field called
Sound. A TOpenDialog is used to get
a filename from the user in order to
fill the BLOB field, as follows:

if OpenDialog1.Execute then
 Table1Sound.LoadFromFile(
 OpenDialog1.FileName);

If there is a WAV file loaded in the
Sound field we can click on the
data-aware WAV playing button to
play this file. I’ve put two demo
sounds in the database: one of
Spock and his auto-answering
machine and another of Bones (his
reaction when he read this article
and saw the component in
action...).

Next Time
Next time in Under Construction
we’ll return to the subject of Tools
APIs and Delphi IDE Experts when
we start exploring the so-called
Component Editors.

Stay tuned, and make sure you’ve
always got a backup of your
COMPLIB.DCL in a save place!

Bob Swart (you can email him at
100434.2072@compuserve.com) is
a professional 16- and 32-bit
software developer using Borland
Delphi and sometimes a bit of
Pascal or C++. In his spare time, he
likes to watch video tapes of Star
Trek Voyager with his almost two
year old son Erik Mark Pascal.

unit Dbwavbtn;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, Buttons, DB, DBTables;
Type
 TDBWavButton = class(TBitBtn)
 private { Private declarations }
 FDataLink: TFieldDataLink;
 MemoryStream: TMemoryStream;
 procedure DataChange(Sender: TObject);
 protected { Protected declarations }
 function GetDataSource: TDataSource;
 procedure SetDataSource(Value: TDataSource);
 function GetDataField: string;
 procedure SetDataField(const Value: string);
 public { Public declarations }
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure Click; override;
 published { Published declarations }
 property DataSource: TDataSource read GetDataSource write SetDataSource;
 property DataField: String read GetDataField write SetDataField;
 end;
procedure Register;
implementation
uses MMSystem;

constructor TDBWavButton.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FDataLink := TFieldDataLink.Create;
 FDataLink.OnDataChange := DataChange;
 MemoryStream := TMemoryStream.Create;
end;

destructor TDBWavButton.Destroy;
begin
 sndPlaySound(nil, 0);
 FDataLink.Free;
 MemoryStream.Free;
 inherited Destroy;
end;

procedure TDBWavButton.DataChange(Sender: TObject);
begin
 Enabled := Assigned(FDataLink);
 if Enabled then
 begin
 sndPlaySound(nil, 0);
 MemoryStream.Clear;
 if (FDataLink.Field IS TBlobField) then
 with (FDataLink.Field AS TBlobField) do SaveToStream(MemoryStream)
 end
end;

procedure TDBWavButton.Click;
begin
 sndPlaySound(MemoryStream.Memory, SND_ASYNC OR SND_MEMORY);
 inherited Click;
end;

function TDBWavButton.GetDataSource: TDataSource;
begin
 Result := FDataLink.DataSource;
end;

procedure TDBWavButton.SetDataSource(Value: TDataSource);
begin
 FDataLink.DataSource := Value;
end;

function TDBWavButton.GetDataField: string;
begin
 Result := FDataLink.FieldName;
end;

procedure TDBWavButton.SetDataField(const Value: string);
begin
 FDataLink.FieldName := Value;
end;

procedure Register;
begin
 RegisterComponents(’Dr.Bob’, [TDBWavButton]);
end;

end.

➤ Listing 5

32 The Delphi Magazine Issue 7

	Data Access
	Data Controls
	Writing Data-Aware Controls
	TDBWavButton
	OnDataChange
	Click
	Demo
	Next Time

